GENOME 569

Class 2: Vibecoding with GitHub Co-pilot

Science

A lineage-resolved molecular atlas of *C. elegans* embryogenesis at single-cell resolution

Jonathan S. Packer¹*, Qin Zhu²*, Chau Huynh¹, Priya Sivaramakrishnan³, Elicia Preston³, Hannah Dueck³†, Derek Stefanik⁴, Kai Tan^{3,5,6,7}, Cole Trapnell¹, Junhyong Kim⁴‡, Robert H. Waterston¹‡, John I. Murray³‡

¹Department of Genome Sciences, University of Washington, Seattle, WA, USA. ²Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA. ³Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ⁴Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. ⁵Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA. ⁶Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ⁷Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

*These authors contributed equally to this work.

†Present address: National Cancer Institute, Bethesda, MD, USA.

‡Corresponding author. Email: junhyong@sas.upenn.edu (J.K.); watersto@uw.edu (R.H.W.); jmurr@pennmedicine.upenn.edu (J.I.M.)

Caenorhabditis elegans is an animal with few cells, but a striking diversity of cell types. Here, we characterize the molecular basis for their specification by profiling the transcriptomes of 86,024 single embryonic cells. We identify 502 terminal and pre-terminal cell types, mapping most single-cell transcriptomes to their exact position in *C. elegans*' invariant lineage. Using these annotations, we find that: 1) the correlation between a cell's lineage and its transcriptome increases from mid to late gastrulation, then falls dramatically as cells in the nervous system and pharynx adopt their terminal fates; 2) multilineage priming contributes to the differentiation of sister cells at dozens of lineage branches; and 3) most distinct lineages that produce the same anatomical cell type converge to a homogenous transcriptomic state.

Cite as: J. S. Packer *et al.*, *Science* 10.1126/science.aax1971 (2019).

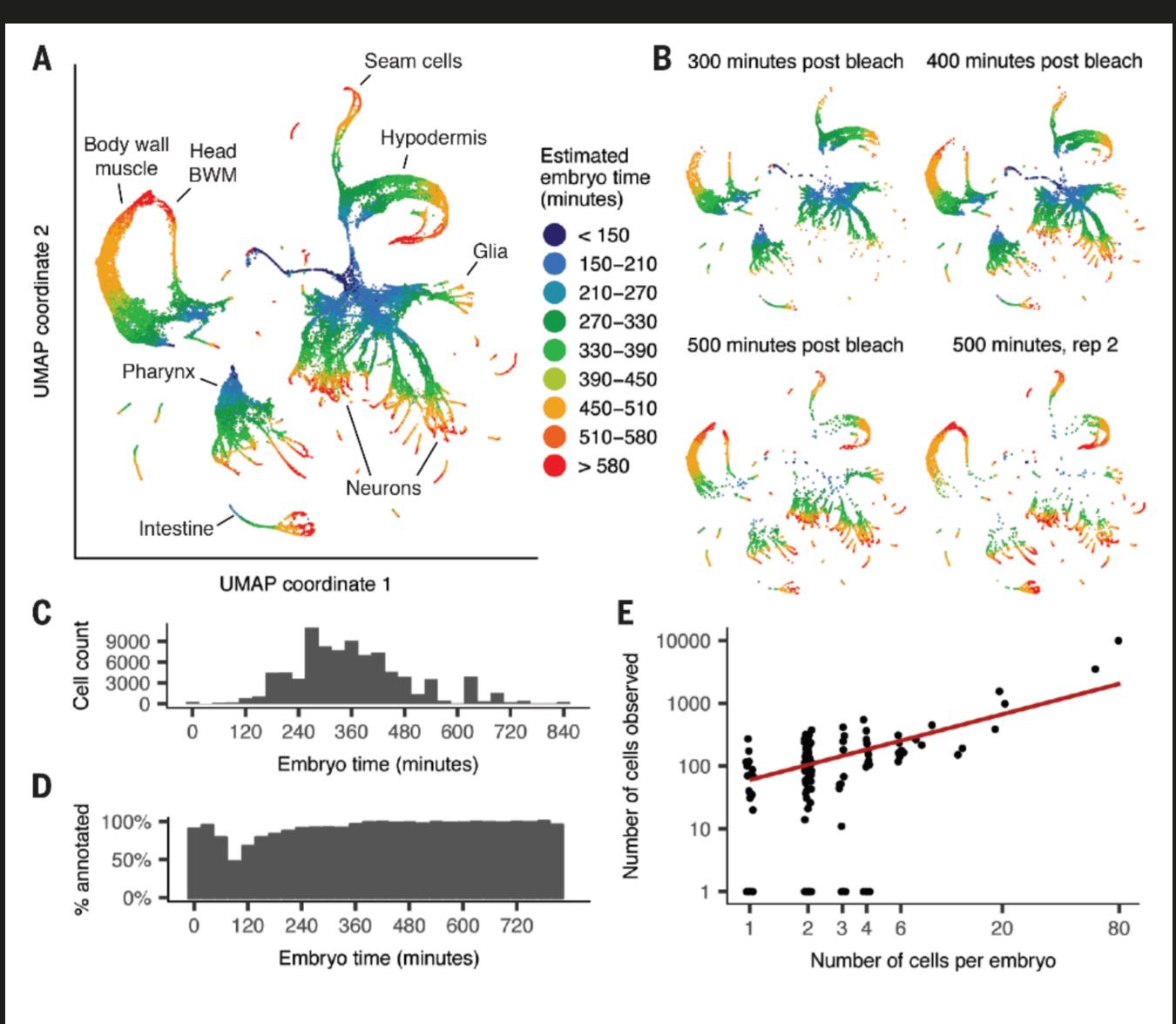


Fig. 1. UMAP projection shows tissues and developmental trajectories in *C. elegans* embryogenesis. (A) UMAP projection of the 81,286 cells from our sc-RNA-seq dataset that passed our initial QC. This UMAP does not include 4,738 additional cells that were initially

Downloading short read data

Where is the data?

ACKNOWLEDGMENTS

We thank members of the Murray, Waterston, and Kim labs, and Ben Lehner and Meera Sundaram for providing critical comments on the manuscript. We also thank A. Zacharias, D. Vafeados, M. Corson, R. Terrell, L. Gevirtzman, and P. Weisdepp for their contributions to the EPiC database. Funding: This work was funded by NIH grants U41HG007355 and R01GM072675 to RHW, and R35GM127093 and R21HD085201 to JIM. This work was also funded in part by Commonwealth of Pennsylvania Health Research Formula Funds and RM1HG010023 to JK, by U2C CA233285 to KT, by the William H. Gates Chair of Biomedical Sciences (RHW), and by the Allen Discovery Center for Lineage Tracing (JSP, CT). Author contributions: JP, CH, JK, RW, and JM conceived and designed the study; CH, PS, EP, HD, and DS performed the experiments; JP, QZ, RW, and JM did the analyses; CT, JK, RW, and JM supervised analyses; JK, JM, and KT supervised the development of VisCello; JP, QZ, JK, RW, and JM wrote the paper. Competing interests: The authors have no competing interests. Data and materials availability: The raw data have been deposited with the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo) under accession code GSE126954. Source code of viscello (with *C. elegans* data) has been deposited at Github (https://github.com/qinzhu/VisCello.celegans) and Zenodo (50). Source code of VisCello for hosting other single cell data has been deposited at Github (https://github.com/qinzhu/VisCello) and Zenodo (51). Gene expression_ movies used in the annotation but not previously published have been deposited at Dryad (doi: 10.5061/dryad.7tg31p7) (52). This article was prepared while HD was employed by the University of Pennsylvania. The opinions expressed in this article are the authors' own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

HOME SEARCH SITE MAP

NCBI > GEO > Accession Display 🕐

GEO help: Mouse over screen elements for information.

Scope: Self \checkmark Format: HTML \checkmark Amount: Quick \checkmark

Series GSE126954

Status	Public on Mar 01, 2019
Title	A lineage-resolved molecular atlas resolution
Organism	Caenorhabditis elegans
Experiment type	Expression profiling by high throug
Summary	We sequence the transcriptomes embryos, spanning from gastrulat identify the lineage (from the approximate developmental age of annotations, we investigate the c fate on gene expression.
Overall design	Single cell RNA-seq profiles of developmental stages (~100-650
	Please note that the GSM259970 and the resulting (processed) data is duplicated sample record of GS the convenient retrieval of the con-

as of C. elegans embryogenesis at single cell

ghput sequencing

es of 86,024 single cells from C. elegans tion to the beginning of cuticle synthesis. We e invariant C. elegans cell lineage) and of each cell in the single cell data. Using these competing influences of cell lineage and cell

cells from C. elegans embryos at varying minutes post first cleavage).

01 (in GSE98561) raw data was re-analyzed a is linked to the GSM4318946 records, which SM2599701 (with the re-analysis details) for molete raw data from SRA

GSM4318946 C.elegans cells (LZ stage) [re-analysis]

Relations

BioProject SRA

PRJNA523834 SRP186643

Download family

SOFT formatted family file(s) MINiML formatted family file(s) Series Matrix File(s)

Supplementary file	Size	Download	File type/resource
GSE126954_RAW.tar	54.1 Mb	(http)(custom)	TAR (of TSV, TXT)
GSE126954_cell_annotation.csv.gz	2.7 Mb	(ftp)(http)	CSV
GSE126954_gene_annotation.csv.gz	173.1 Kb	(ftp)(http)	CSV
GSE126954_gene_by_cell_count_matrix.txt.gz	249.2 Mb	(ftp)(http)	ТХТ

SRA Run Selector 😰

Raw data are available in SRA

Processed data are available on Series record Processed data provided as supplementary file

Format				
SOFT <table-cell></table-cell>				
MINiML <table-cell></table-cell>				
TXT 😰				

NLM | NIH | GEO Help | Disclaimer | Accessibility **HHS Vulnerability Disclosure**

GSM4318946 c.elegans cells (LZ stage) [re-analysis]

Relations

BioProject SRA

PRJNA523834 SRP186643

Download family

SOFT formatted family file(s) MINiML formatted family file(s) Series Matrix File(s)

Supplementary file	Size	Download	File type/resource
GSE126954_RAW.tar	54.1 Mb	(http)(custom)	TAR (of TSV, TXT)
GSE126954_cell_annotation.csv.gz	2.7 Mb	(ftp)(http)	CSV
GSE126954_gene_annotation.csv.gz	173.1 Kb	(ftp)(http)	CSV
GSE126954_gene_by_cell_count_matrix.txt.gz	249.2 Mb	(ftp)(http)	TXT
SRA Run Selector 🗹			

Raw data are available in SRA

Processed data are available on Series record Processed data provided as supplementary file

HHS Vulnerability Disclosure

Format SOFT 😰

MINIML [2]

TXT 🔃

NLM | NIH | GEO Help | Disclaimer | Accessibility

NIH National Library of Medicine National Center for Biotechnology Information

SRA Run Selector Q 😧 🌣 🔗

Filters List	Accession PRJNA	A523834 Q Search
1 AvgSpotLen 2 Bases	Common Fields	
3 BioSample	BioProject	PRJNA523834
4 Bytes5 Developmental_stage	Consent	PUBLIC
6 Experiment	Assay Type	RNA-Seq
7 GEO_Accession8 ReleaseDate	Center Name	GEO
9 Sample Name	DATASTORE filetype	FASTQ, RUN.ZQ, SRA
10 source_name 11 strain	DATASTORE provider	GS, NCBI, S3
ii Stan	DATASTORE region	gs.us-east1, ncbi.public, s3.us-east-1
	Instrument	NextSeq 500

LibraryLayout

Select	Runs		Bases	Download	
Total	966	122.02 Gb	288.53 G	Metadata	
Selected	0	0	0	Metadata	

PAIRED

🔀 Found 966	ound 966 Items Search within results					Q Clear				< 1	20 >	
×	▲ Run	BioSample	AvgSpotLen	Bases	♦ Bytes	6 Developmental_stage	Experiment	⁸ GEO_Accession	ReleaseDate	create_date	Sample Name	source_name
1	SRR11102139	AMN14126930	70	113.13 M	47.48 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 02:42:00Z	GSM4318946	whole c.elegans (L2 s
2	SRR11102140	SAMN14126930	70	122.22 M	51.82 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 02:42:00Z	GSM4318946	whole c.elegans (L2 s
3	SRR11102141	SAMN14126930	70	209.35 M	87.73 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 02:57:00Z	GSM4318946	whole c.elegans (L2 s
4	SRR11102142	SAMN14126930	70	125.96 M	52.57 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 02:43:00Z	GSM4318946	whole c.elegans (L2 s
5	SRR11102143	SAMN14126930	70	96.16 M	40.45 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 03:04:00Z	GSM4318946	whole c.elegans (L2 s
6	SRR11102144	SAMN14126930	70	128.87 M	53.77 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 03:04:00Z	GSM4318946	whole c.elegans (L2 s
7	SRR11102145	SAMN14126930	70	115.29 M	47.97 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 02:55:00Z	GSM4318946	whole c.elegans (L2 s
8	SRR11102146	SAMN14126930	70	75.24 M	31.55 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 02:56:00Z	GSM4318946	whole c.elegans (L2 s
9	SRR11102147	SAMN14126930	70	106.55 M	44.42 Mb	L2	SRX7740729	GSM4318946	2020-04-24	2020-02-19 03:11:00Z	GSM4318946	whole c.elegans (L2 s

	Cloud Data Delivery	Computing
or Accession List		
or Accession List or JWT Cart	Deliver Data	Galaxy

\$ fasterq-dump SRR11102139

\$ module load sratoolkit/latest

spots read : 1,616,210 reads read : 3,232,420 reads written : 3,232,420 coletrap@nexus3:~/tmp/trash/packer data\$ ls -al total 464897 drwxr-xr-x 2 coletrap trapnelllab 4096 Mar 31 15:45 . drwxr-xr-x 7 coletrap trapnelllab 4096 Mar 31 15:44 .. coletrap@nexus3:~/tmp/trash/packer data\$

coletrap@nexus3:~/tmp/trash/packer data\$ fasterq-dump SRR11102139

```
-rw-r--r-- 1 coletrap trapnelllab 183035944 Mar 31 15:45 SRR11102139 1.fastq
-rw-r--r-- 1 coletrap trapnelllab 292938224 Mar 31 15:45 SRR11102139 2.fastq
```

[coletrap@nexus3:~/tmp/trash/packer data\$ head SRR11102139 1.fastq @SRR11102139.1 1 length=18 TGATTTTGGCCTGATATA +SRR11102139.1 1 length=18 A/AAAEEEEEEEEEEEE @SRR11102139.2 2 length=18 GCTCCGCGTGCAGCCTAC +SRR11102139.2 2 length=18 AA/A/E6EEEEEE6E/E @SRR11102139.3 3 length=18 AAAGGATTATCTGCCAAT coletrap@nexus3:~/tmp/trash/packer data\$ head SRR11102139 2.fastq @SRR11102139.1 1 length=52 +SRR11102139.1 1 length=52 @SRR11102139.2 2 length=52 +SRR11102139.2 2 length=52

@SRR11102139.3 3 length=52 CTCCTAGTGTATCTCGTTATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTA

There are 966 run files for this paper...

How might we automate the downloading of all of these files?

Clone the starter project repo

Click on this link: https://classroom.github.com/a/GrDP9OaP

coletrapnell-teaching/packer-workflow-starter-<your_gihub_id>.git

Now check out the README.md

Fornow