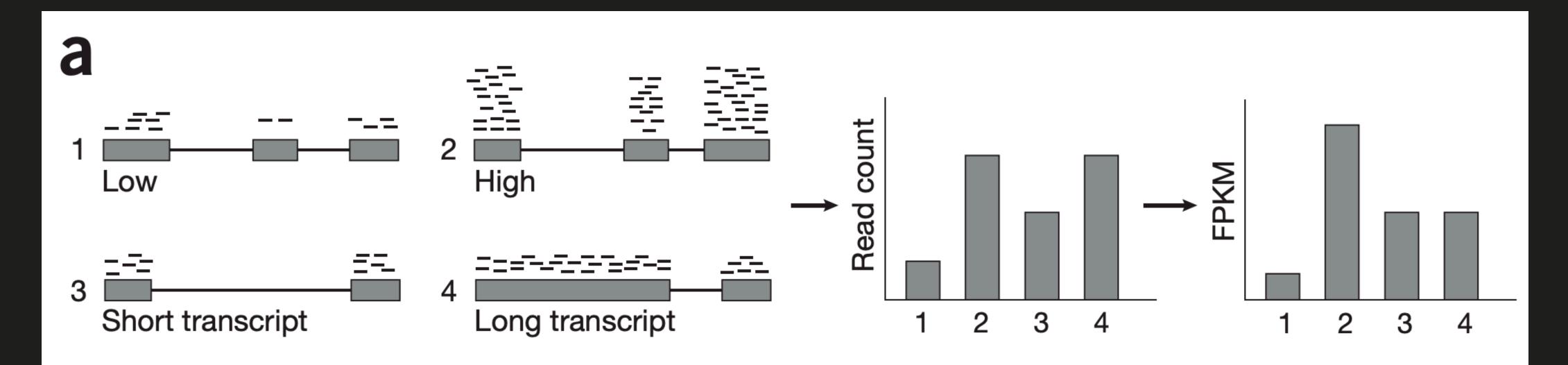
GENOME 569

Class 3: NGS read alignment


What packages did CoPilot use?

What did you have to do "the old fashioned way?"

Discussion about Phase

Any problems?

Measuring gene expression with NGS

The number of reads from a transcript is proportional to its abundance. With random RT primers, you also need to correct for transcript length. Garber, Grabherr, Guttman, & Trapnell, *Nature Methods* 2011

How to map billions of short reads onto genomes

Cole Trapnell & Steven L Salzberg

Mapping the vast quantities of short sequence fragments produced by next-generation sequencing platforms is a challenge. What programs are available and how do they work?

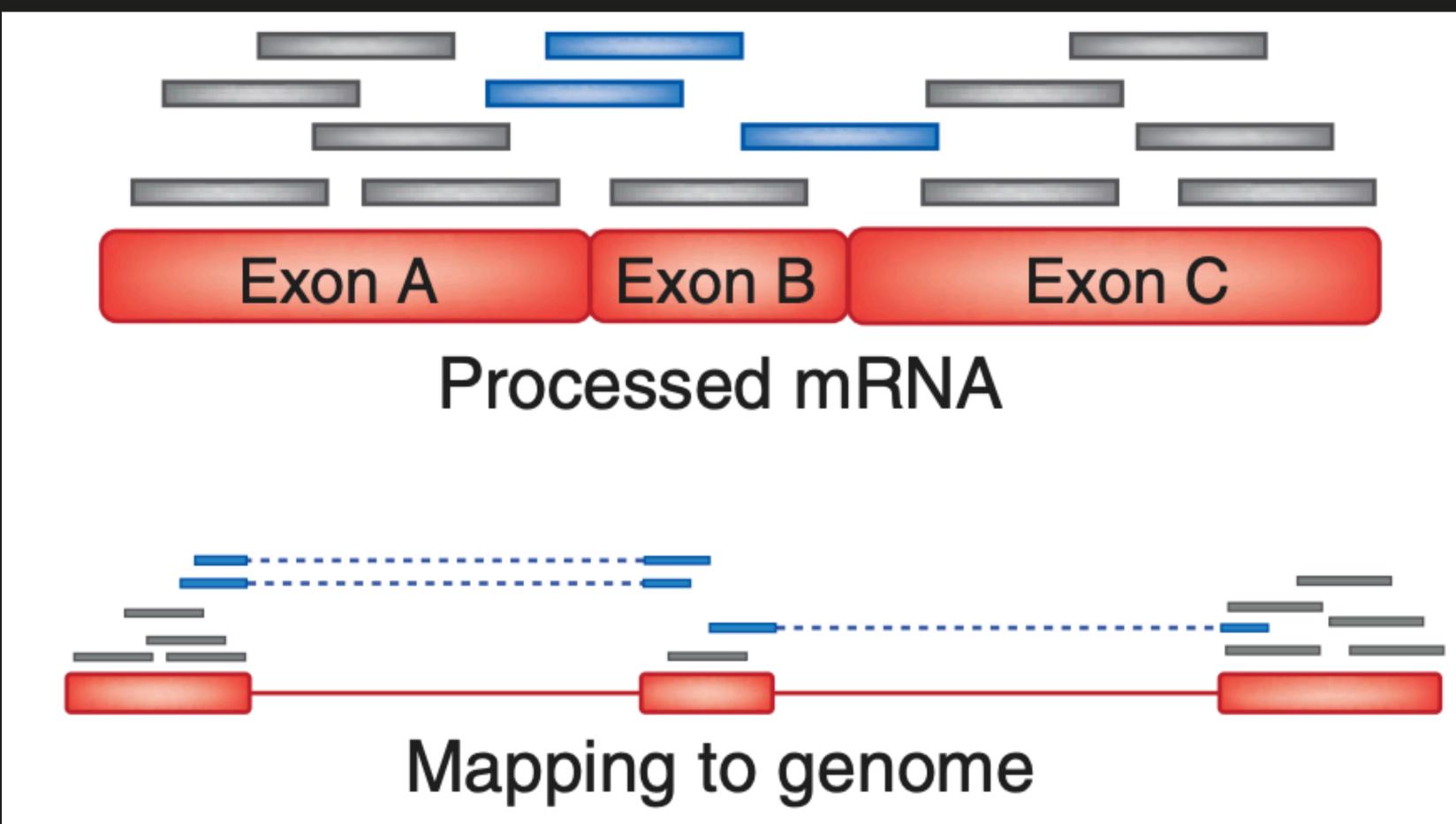
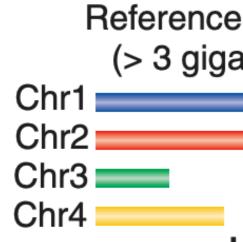

new generation of DNA sequencers that can Arapidly and inexpensively sequence billions of bases is transforming genomic science. These new machines are quickly becoming the technology of choice for whole-genome sequencing and for a variety of sequencing-based assays, including gene expression, DNA-protein interaction, human resequencing and RNA splicing studies¹⁻³. For example, the RNA-Seq protocol, in which processed mRNA is converted to cDNA and sequenced, is enabling the identification of previously unknown genes and alter-

Table 1 A selection of short-read analysis software					
Program	Website	Open source?	Handles ABI color space?	Maximum read length	
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None	
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None	
Maq	http://maq.sourceforge.net	Yes	Yes	127	
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None	
Novoalign	http://www.novocraft.com	No	No	None	
SOAP2	http://soap.genomics.org.cn	No	No	60	
ZOOM	http://www.bioinfor.com	No	Yes	240	

All rights reserved. America, Inc. Ф

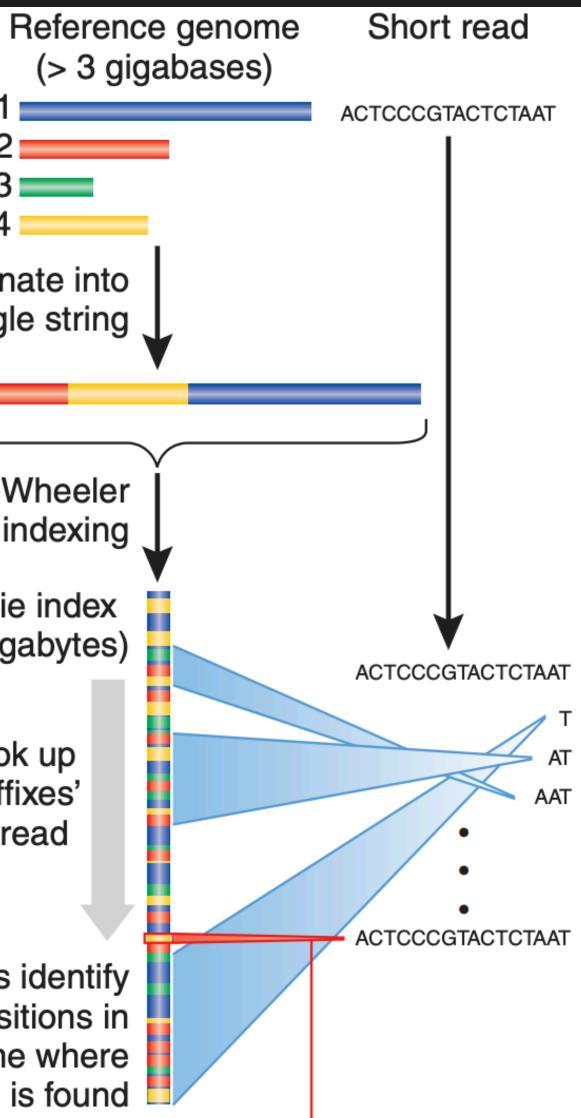

PRIMER

Aligning RNA-seq reads

Trapnell & Salzberg, Nature Biotechnology 2009

Aligning RNA-seq reads

Concatenate into single string


Burrows-Wheeler transform and indexing

AAT

Bowtie index (~2 gigabytes)

> Look up 'suffixes' of read

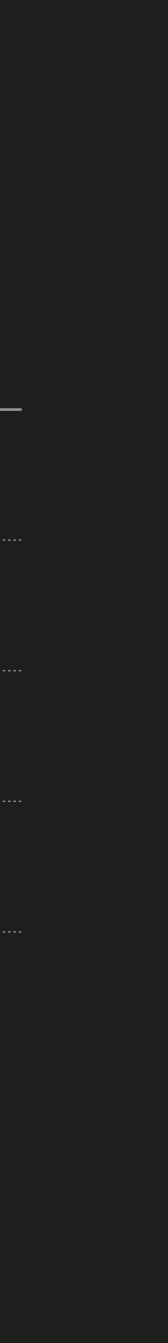
Hits identify positions in genome where read is found h pair

Software for mapping NGS reads

Tool	DNA/RNA
bwa	DNA
Bowtie	DNA
TopHat	RNA
HISAT	RNA
STAR	RNA

Many others (some highly specialized), but these are the most popular

Mapping strategy


Burroughs Wheeler

Burroughs Wheeler

Burroughs Wheeler + linkage

Burroughs Wheeler

Suffix arrays

Problem: map NGS reads to a genome

Solution:

- STAR \

--runThreadN 8 \ --genomeDir \$INDEX \ –genomeLoad LoadAndKeep --readFilesIn \$INPUT/\$FILE \ --readFilesCommand zcat \ --outFileNamePrefix \$0UTPUT/\$SAMPLE. \ --outSAMtype BAM Unsorted \ --outSAMstrandField intronMotif

STAR --genomeDir ~coletrap/teaching/genome569/reference \ --readFilesIn small_reads.fastq \ --outFileNamePrefix example/ \ --outSAMtype BAM Unsorted \ --outSAMstrandField intronMotif

Sample problem 1

- \$ module load STAR/latest
- Download "small_reads.fastq"
- Use STAR to map these reads to the worm genome:
- wget https://ctrapnell.github.io/genome569/example_files/small_reads.fastg

Problem: store alignments in a standard format

Solution:

Sequence Alignment/Map Format Specification

The SAM/BAM Format Specification Working Group

The master version of this document can be found at https://github.com/samtools/hts-specs. This printing is version dfc3e48 from that repository, last modified on the date shown above.

1 The SAM Format Specification

SAM stands for Sequence Alignment/Map format. It is a TAB-delimited text format consisting of a header section, which is optional, and an alignment section. If present, the header must be prior to the alignments. Header lines start with '@', while alignment lines do not. Each alignment line has 11 mandatory fields for essential alignment information such as mapping position, and variable number of optional fields for flexible or aligner specific information.

 $5~{\rm Feb}~2020$

Coor	12345678901234
ref	AGCATGTTAGATAA**
1	TTAATAAA
+r001/1	TTAGATAAAG
+r002	aaaAGATAA*G
+r003	gcctaAGCTAA
+r004	
-r003	
-r001/2	

@HD \	<pre>@HD VN:1.6 SO:coordinate</pre>										
@SQ S	SN:rei	f LN:	:45								
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACTG	*	
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*	
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	i
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*	
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	
r001	147	ref	37	30	9M	=	7	-39	CAGCGGCAT	*	1

Example alignment

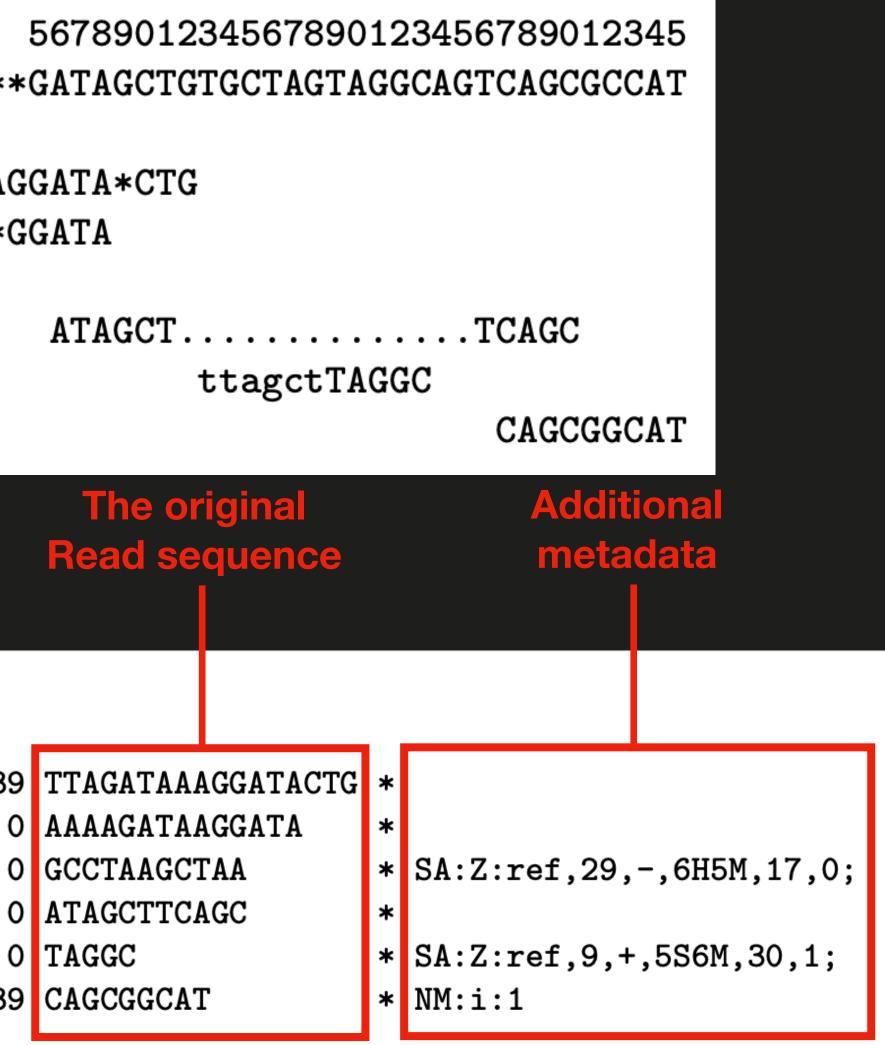
5678901234567890123456789012345 *GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

GGATA*CTG GGATA

> ATAGCT....TCAGC ttagctTAGGC

CAGCGGCAT

- * SA:Z:ref,29,-,6H5M,17,0;
- * SA:Z:ref,9,+,5S6M,30,1;
- * NM:i:1



Coor ref	12345678901234 AGCATGTTAGATAA**(
+r001/1 +r002 +r003 +r004 -r003 -r001/2	TTAGATAAAG aaaAGATAA*G gcctaAGCTAA
Where the Read maps	

name Read maps different										
<pre>@HD VN:1.6 SO:coordinate @SO SN:ref LN:45</pre>										
	01		ref		30	8M2I4	M1D3M	=	37	39
r0	02	0	ref	9	30	3S6M1	P1I4M	*	0	0
r0	03	0	ref	9	30	5S6M		*	0	0
r0	04	0	ref	16	30	6M14N	5M	*	0	0
r0	03	2064	ref	29	17	6H5M		*	0	0
r0	01	147	ref	37	30	9M		=	7	-39

Read

Example alignment

Key features of SAM

Widely adopted. Nearly every read aligner uses it, many analysis tools accept it as input

"Lossless" - SAM files include all the information in the raw reads (even those that don't map to the genome)

Can be stored in a binary format and heavily compressed

Can be indexed for fast lookup. You can easily extract all the alignments for a specific locus.

samtools

Problem: extract alignments in a given locus

Regions look like this:

chr1:19200776-19220776

Solution: samtools view input.bam <region>

[coletrap@grid-head1 output-clean]\$ samtools view aligned-A02A27 90257 | ? | A02 | A27 | AAGTTACCTA | TGTTCGGT GAGATGCTTTGTAACACGTCCGATACCCGCTCCGCAGTC AAA/AEEEEEEEEEEEEEEEE :0 A02A27 198730 | ? | A02 | A27 | AAGTTACCTA | TGTTCGGT 0 GAGATGCTTTGTAACACGTCCGATACCCGCTCCGCAGTC AAAAAEEEEEEEEEE :0 A02A27 407121 | ? | A02 | A27 | AGGCCGCTCG | ATTGCTAC 0 GCTGCAGGAGCACTAATTAATGATTCAATAGTTTCAGTA AAAAA6AAEEEEEEEE :0 A02A27 75625 | ? | A02 | A27 | AGGCCGCTCG | ATTGCTAC 0 GCTGCAGGAGCACTAATTAATGATTCAATAGTTTCAGTA AAAAAEEEEEEEEEEE :0 A02A27 511761 | ? | A02 | A27 | ACGGAGAATA | GCTTCAAC 0 GGAATTGTAAGAATGAGAGCTAGCGGATGTGACGTGGCT AAAAAEEEEAEEEEAEE :0 A02A27 456432 | ? | A02 | A27 | AGGCCGCTCG | CTGCTGAC 0 /AAAAA//EE/EAEE/EEAA NH:i:1 HI:i:1 GATTTTTG A02A27 526097 | ? | A02 | A27 | GTATACCGAA | TACAATGT 0 TCAGACGATTCAATGGATTGTTGATAGAGATCGATCGGT AAAA/EE/EEEEEEE/E :0 A02A27 531142 | ? | A02 | A27 | GGCTATGACT | CTTGGTTT 0 TTATTGTGGCCAGCCTCACGCAAATGTGCTGT 66A6/E/EA/E//E//EA A02A27 364043 | ? | A02 | A27 | GGCTATGACT | CTTGGTTA 0 TTATTGTGGACAGCCACACGCAAATGTGCTGTGATCCAT AA6AAEA/AA/6AEAEA, :2 A02A27 411978 | ? | A02 | A27 | GGCTATGACT | CTTGGTTT TTATTGTGGCCAGCCTCACGCAAATGTGCTGTGATCCAT AAAAAEEEEEEEEEEE :0

-reads-	filtered	l-sorted/	A02A27.t	oam hea	ıd		
	6247	255	51M	*	0	0	GAATGO
EE/EEE	EEEAEEEE	EEEAE/EEE	EEEEEEE	EEE	NH:i:1	HI:i:1	AS:i:5
	6247	255	51M	*	0	0	GAATGO
EEEEE	CAEEEE6EE	DEEEEEEE	EAEEEEE	EEE	NH:i:1	HI:i:1	AS:i:5
	30051	255	51M	*	0	0	GAACTA
'EEE6EE	EAEEAEEE	EFFFFFFF	EEEEEEE	EEE	NH:i:1	HI:i:1	AS:i:5
	30051	255	51M	*	0	0	GAACTA
	EEEEEEEE		EEEEEEE	EEE	NH:i:1	HI:i:1	AS:i:5
	73612		51M				
	EEEEAEEE	399999999	EEE/EEE	333	NH:i:1	HI:i:1	AS:i:5
		255	20M	*	0	0	GCTCAC
S:i:19	nM:i:0						
			51M	*	0	0	TCAGAC
CAAEEEE	EEEEEAEE	EEEEEAEE	EEEEEAEE	EAE	NH:i:1	HI:i:1	AS:i:5
		255		*	0	0	CAGATA
A/EEE//		E//A/EEEE				AS:i:43	
	86836		51M	*	0	0	CAGATA
'E/A/E/	//AA/EE//	//EEEA <a <="" td=""><td>/A/E/EE/</td><td>'EEA</td><td>NH:i:1</td><td>HI:i:1</td><td>AS:i:4</td>	/A/E/EE/	'EEA	NH:i:1	HI:i:1	AS:i:4
					-	-	
	86836		51M	*	0	0	CAGATA
	EAEEEEE	EAEEEEEE			NH:i:1	HI:i:1	AS:i:5

samtools tview input.bam

gagaaacccgctatcacagactcaatgcgcaccggagggggctctttgtgtg gagaaacccgctatcacagactcaatgcgcaccggagggggctctttgtgtg gagaaacccgctatcacagactcaatgcgcaccggagggggctctttgtgtg agaaacccgctatcacagactcaatgcgcaccggagggggctctttgtgtg

- Browser Extensible Data format introduced by UCSC genome browser
 - Widely used to annotate genomes with intervals of interest
 - Simple, tab-delimited text file
 - Not very extensible, so used for very simple features (e.g. enhancers)
- FYI gene models typically stored in GFF or GTF format, which is much more complex.

WS260.rRNA.genes.bed

Chromosome	omosome Start		Stop	Feature name	"Score"	Strand
I	1506208	3	15063836	WBGene00004512	255	+
I	1506430	1	15064453	WBGene00004567	255	+
I	1506483	8	15068346	WBGene00004622	255	·····
I	1506928	0	15071033	WBGene00004513	255	+
MtDNA	898	1593	WBGene00014454	255 +		
MtDNA	10403	11354	WBGene00014472	255 +		
V	1711590	3	17116021	WBGene00077465	255	+
V	1711786	3	17117981	WBGene00077466	255	+
V	1711883	7	17118935	WBGene00077467	255	····· +

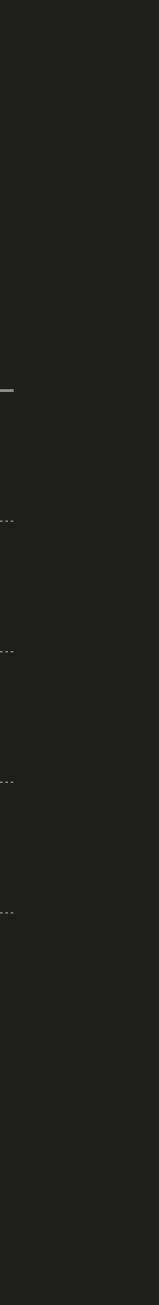
bedtools

Problem: compute overlap between BED files

Solution:

bedtools intersect -a reads.bed -b genes.bed

This command computes the number of bases in file "B" that are covered by intervals in file "A".



Bedtools has many utilities

Command bamtobed closest overlap merge subtract

Function

- Convert a BAM file to a BED file
- For each interval in one file, find the closest in another
 - Compute the overlap between intervals
 - Merge intervals that overlap
 - Remove the overlapping regions from intervals
 - And many, many, many more functions. Many with multiple modes of operation.

Sample problem 2

- Download "genes.bed"
- Use bedtools to count the number of reads you just mapped that hit each gene.
 - samtools sort example/Aligned.out.bam > example/sorted.bam
 - bedtools intersect -a genes.bed -b example/sorted.bam -wa -c

1947001	11953126
1953512 1971179	11961984 11971797
1979401	11985612

I I I

Ι

Note that the output is a BED file! The "score" field I told you to ignore earlier has the results.

Sample problem 2

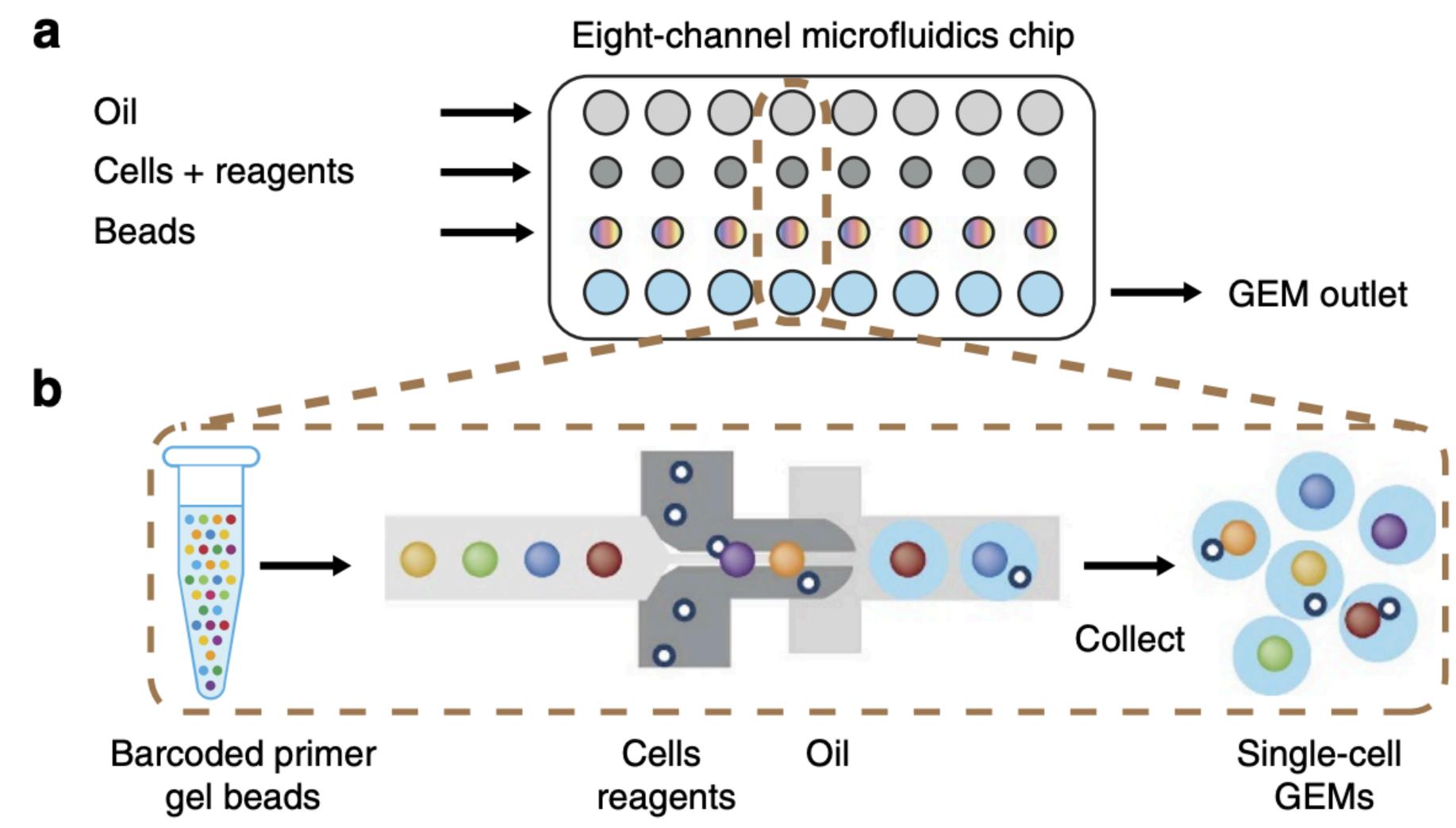
WBGene00011060 255 1 + 15 WBGene00002004 255 WBGene00044805 Ø 255 — WBGene00013135 1 255 +

Droplet-based Single-cell RNA-seq (10X)

ARTICLE

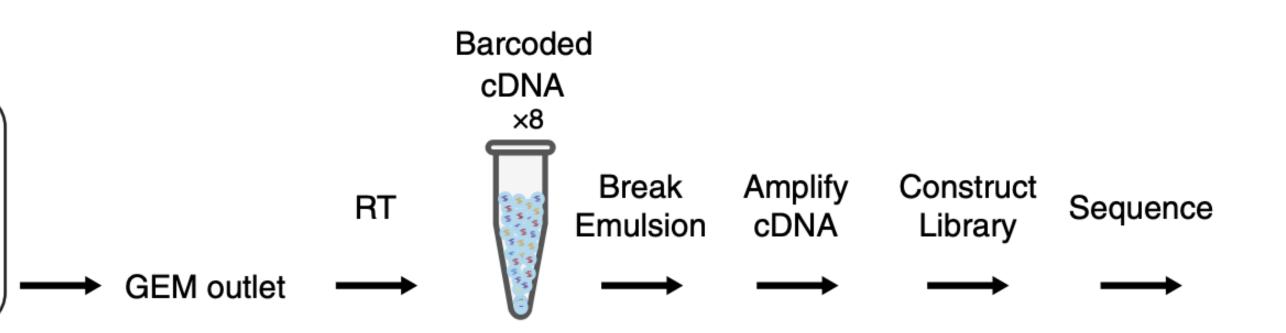
Received 20 Sep 2016 | Accepted 23 Nov 2016 | Published 16 Jan 2017

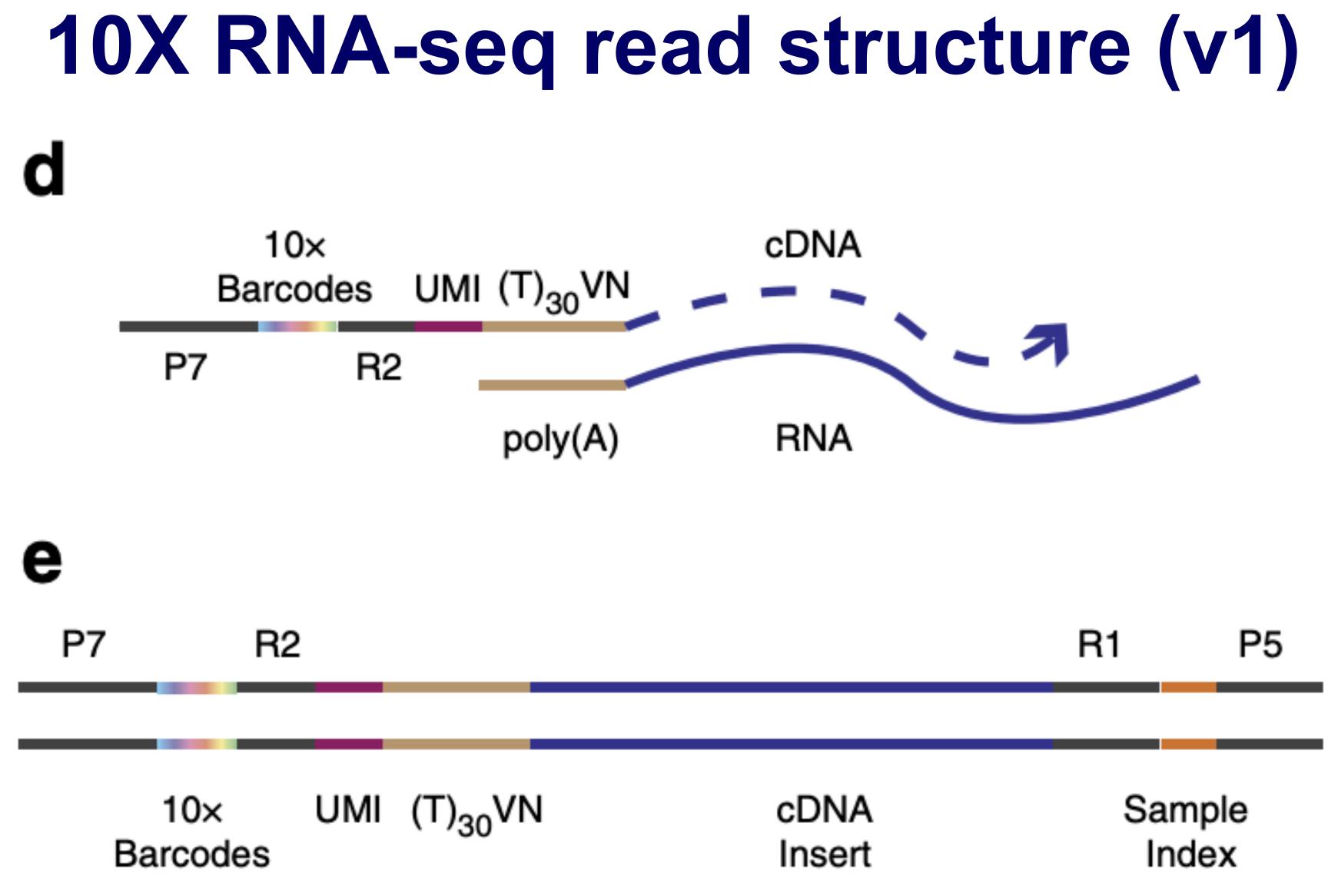
Massively parallel digital transcriptional profiling of single cells

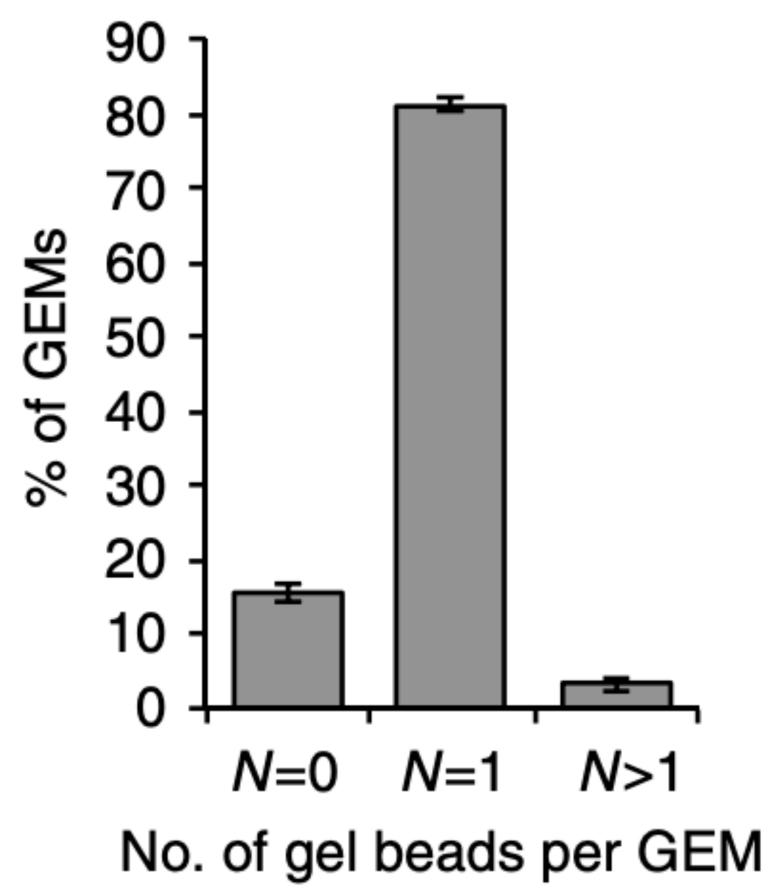

Luz Montesclaros¹, Jason G. Underwood^{1,3}, Donald A. Masquelier¹, Stefanie Y. Nishimura¹, Benjamin J. Hindson¹ & Jason H. Bielas^{2,6,8,9}

DOI: 10.1038/ncomms14049

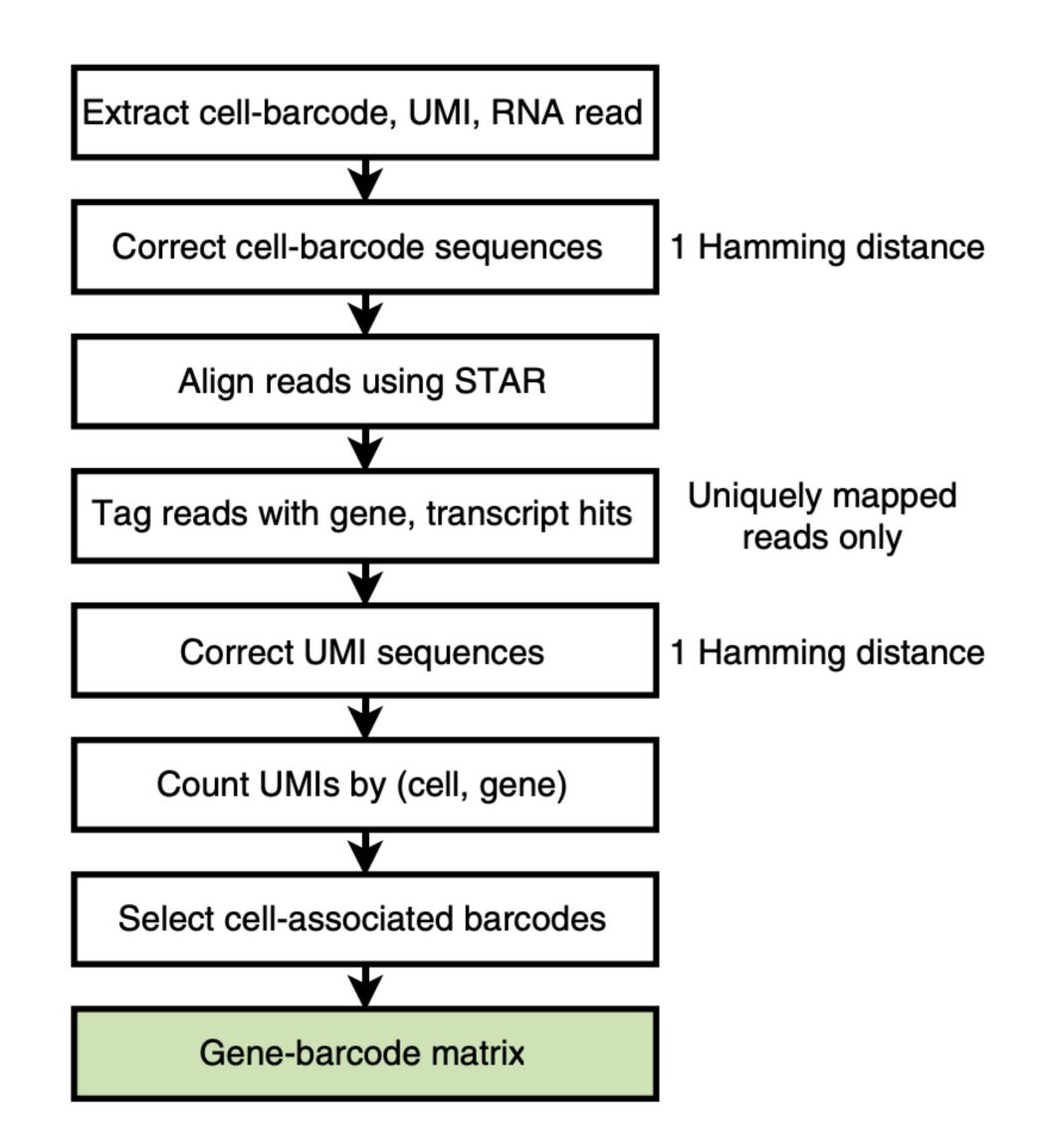
OPEN

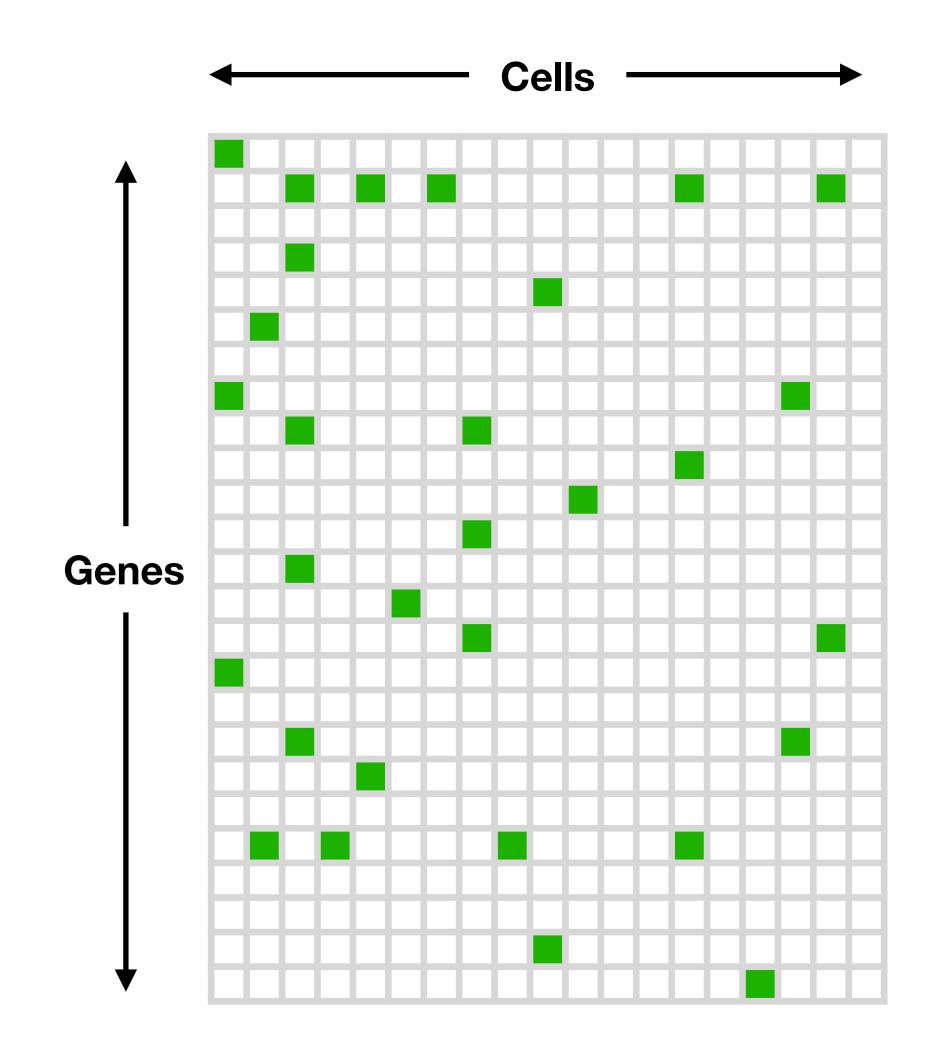

Grace X.Y. Zheng¹, Jessica M. Terry¹, Phillip Belgrader¹, Paul Ryvkin¹, Zachary W. Bent¹, Ryan Wilson¹, Solongo B. Ziraldo¹, Tobias D. Wheeler¹, Geoff P. McDermott¹, Junjie Zhu¹, Mark T. Gregory², Joe Shuga Michael Schnall-Levin¹, Paul W. Wyatt¹, Christopher M. Hindson¹, Rajiv Bharadwaj¹, Alexander Wong¹, Kevin D. Ness¹, Lan W. Beppu⁴, H. Joachim Deeg⁴, Christopher McFarland⁵, Keith R. Loeb^{4,6}, William J. Valente^{2,7,8}, Nolan G. Ericson², Emily A. Stevens⁴, Jerald P. Radich⁴, Tarjei S. Mikkelsen¹,


Droplet-based Single-cell RNA-seq (10X)


Droplet-based Single-cell RNA-seq (10X)

A Eight-channel microfluidics chip Oil → Cells + reagents → Beads →





Droplets contain ~1 cell ("Poisson loading")

The 10X bioinformatics workflow

Most genes detected in few cells - matrix is very sparse!

New Results

STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data

Benjamin Kaminow, Dinar Yunusov, Alexander Dobin doi: https://doi.org/10.1101/2021.05.05.442755

This article is a preprint and has not been certified by peer review [what does this mean?].

HOME SUBM

Follow this preprint

Explore the output! How many of your reads mapped to the worm genome? How many cells did STARsolo report output for?

Sample problem 3

Run STARsolo (with the proper arguments for 10X v1 chemistry) on one of the Packer et al 2019 samples.

Fornow