
GENOME 569
Class 4: Workflow automation tools

Essential UNIX

Essential commands
Command Function

ls List the contents of a directory
sort Sort a file line by line
grep Search inside files for pattern
awk Write programs that process files line by line
sed Transform a file line by line
cut Cut out selected columns of a file
join Join two files together based on columns

datamash Multi-purpose tools to manipulate tab-delimited files
bedtools Multi-purpose tool to manipulate BED files
samtools Multi-purpose tool to manipulate SAM/BAM files

grep

Problem: search for strings in other strings

grep <regexp> file Solution:

Regular Expression Syntax

• Most characters match themselves

The regular expression “test” matches the string ‘test’, and only
that string

• [x] matches any one of a list of characters

“[abc]” matches ‘a’,‘b’,or ‘c’

• [^x] matches any one character that is not included in x
“[^abc]” matches any single character except ‘a’,’b’,or ‘c’

Regular Expression Syntax

• “.” matches any single character

• Parentheses can be used for grouping

“(abc)+” matches ’abc’, ‘abcabc’, ‘abcabcabc’, etc.

• x|y matches x or y

“this|that” matches ‘this’ and ‘that’, but not
‘thisthat’.

Regular Expression Syntax

• x* matches zero or more x’s
“a*” matches ’’, ’a’, ’aa’, etc.

• x+ matches one or more x’s
“a+” matches ’a’,’aa’,’aaa’, etc.

• x? matches zero or one x’s
 “a?” matches ’’ or ’a’

• x{m, n} matches i x‘s, where m<i< n
“a{2,3}” matches ’aa’ or ’aaa’

Example: email addresses

Here’s a pattern to match simple email
addresses:

 \w+@(\w+\.)+(com|org|net|edu)

coletrap@uw.edu spam@go.away

How can we easily tell these two apart?

Regular Expression Syntax

• “\d” matches any digit; “\D” any non-digit

• “\s” matches any whitespace character; “\S” any non-

whitespace character

• “\w” matches any alphanumeric character; “\W” any non-

alphanumeric character

• “^” matches the beginning of the string; “$” the end of the

string

• “\b” matches a word boundary; “\B” matches a character that is

not a word boundary

Sample problem 1

Find the lines in the notes that mention 'cell'

Find the lines in the notes that talk about 'A549'

Find the lines that talk about either A549 or MCF7 (use regex)

Find the lines that end with a cell line id (i.e. A549 or MCF7, use regex!)

Download “grep_sed_example1.txt”

Sample problem 2

Change instances of A549 to MCF7

Change only the second instance of A549 to A549_LUNG

Change instances of A549 to MCF7, but without stating "A549" (i.e. use regex)

Download “grep_sed_example1.txt”

How do we make all these changes at the same time?

sci-RNA-seq

Single-cell RNA-seq with combinatorial cellular indexing

Cao & Packer et al, Science 2017

The sci-RNA-seq read layout

sci-RNA-seq: single-cell RNA-seq on whole animals

Anatomy of a pipeline

The sci-RNA-seq pipeline

Extract RT barcode
& UMI from R2

Trim polyA tails

Map reads to
genome

Filter
 mapped reads

Sort
mapped reads

Split reads
Into genomic

intervals

Assign reads to
genes

Count UMIs

Compute summary
statistics

Generate QC plots Make final UMI
count matrix

FASTQ files

Repo structure for Cao pipeline

Start here

#---
Put read 1 info (RT well, UMI) into read 2 read name
#---
echo "Moving read 1 info into read 2 name"

cd $WORKING_DIR

mkdir combined-fastq
mkdir file-lists-for-r1-info-munging
mkdir put-r1-info-in-r2-logs

ls $READS_DIR/fastq | grep _R1_ | grep -v Undetermined | split -l 25 -d - file-lists-for-r1-info-munging/

ls file-lists-for-r1-info-munging | while read BATCH; do
 qsub -P $CLUSTER_ID -j y -o $LOG_DIR -N MOVER1R2.${BATCH} $SCRIPTS_DIR/put-read1-info-in-read2.sh \
 $READS_DIR/fastq \
 $WORKING_DIR/file-lists-for-r1-info-munging/$BATCH \
 $SCRIPTS_DIR/ \
 $RT_BARCODES_FILE \
 $CONFIG_DIR/combinatorial.indexing.key \
 $WORKING_DIR/combined-fastq \
 $WORKING_DIR/put-r1-info-in-r2-logs
done
qsub -hold_jid "MOVER1R2*" -sync y -b y echo "DONE"

Extract RT barcode
& UMI from R2

sci-RNA-seq.pipeline.elegans.sh

#---
Put read 1 info (RT well, UMI) into read 2 read name
#---
echo "Moving read 1 info into read 2 name"

cd $WORKING_DIR

mkdir combined-fastq
mkdir file-lists-for-r1-info-munging
mkdir put-r1-info-in-r2-logs

ls $READS_DIR/fastq | grep _R1_ | grep -v Undetermined | split -l 25 -d - file-lists-for-r1-info-munging/

ls file-lists-for-r1-info-munging | while read BATCH; do
 qsub -P $CLUSTER_ID -j y -o $LOG_DIR -N MOVER1R2.${BATCH} $SCRIPTS_DIR/put-read1-info-in-read2.sh \
 $READS_DIR/fastq \
 $WORKING_DIR/file-lists-for-r1-info-munging/$BATCH \
 $SCRIPTS_DIR/ \
 $RT_BARCODES_FILE \
 $CONFIG_DIR/combinatorial.indexing.key \
 $WORKING_DIR/combined-fastq \
 $WORKING_DIR/put-r1-info-in-r2-logs
done
qsub -hold_jid "MOVER1R2*" -sync y -b y echo "DONE"

Extract RT barcode
& UMI from R2

“pipe”: sends the output of
one command into the next

command as input

grep: prints lines from the
input that match the regular

expression provided

split: split up a file into
chunks. In this case, chunks

of 25 lines

sci-RNA-seq.pipeline.elegans.sh

#---
Put read 1 info (RT well, UMI) into read 2 read name
#---
echo "Moving read 1 info into read 2 name"

cd $WORKING_DIR

mkdir combined-fastq
mkdir file-lists-for-r1-info-munging
mkdir put-r1-info-in-r2-logs

ls $READS_DIR/fastq | grep _R1_ | grep -v Undetermined | split -l 25 -d - file-lists-for-r1-info-munging/

ls file-lists-for-r1-info-munging | while read BATCH; do
 qsub -P $CLUSTER_ID -j y -o $LOG_DIR -N MOVER1R2.${BATCH} $SCRIPTS_DIR/put-read1-info-in-read2.sh \
 $READS_DIR/fastq \
 $WORKING_DIR/file-lists-for-r1-info-munging/$BATCH \
 $SCRIPTS_DIR/ \
 $RT_BARCODES_FILE \
 $CONFIG_DIR/combinatorial.indexing.key \
 $WORKING_DIR/combined-fastq \
 $WORKING_DIR/put-r1-info-in-r2-logs
done
qsub -hold_jid "MOVER1R2*" -sync y -b y echo "DONE"

Extract RT barcode
& UMI from R2

qsub: submit a job to the SGE scheduler. In this case, the job script is “put-read1-info-in-read2.sh”

This is a special way to call qsub so it waits for all
jobs named “MOVER1R2” to finish

sci-RNA-seq.pipeline.elegans.sh

Extract RT barcode
& UMI from R2BEGIN {

 read_num = 0;
 hits = 0;

 bases[1] = "A";
 bases[2] = "C";
 bases[3] = "G";
 bases[4] = "T";

 p5_row = substr(PCR_COMBO, 1, 1);
 p5_col = substr(PCR_COMBO, 2, 2);
 p7_row = substr(PCR_COMBO, 4, 1);
 p7_col = substr(PCR_COMBO, 5, 2);

 single_sample = "";
} {

XXXXXXXXXX

} END {
 printf("%d\t%d\t%.3f\t(RT barcode matches, total reads, proportion)\n",
 hits, read_num, hits / read_num) > "/dev/stderr";
}

Put-read1-into-read2.awk

Snakemake

Project Phase II

THE END
For now

