GENOME 569A Class 5: Electronic lab notebooks

Project 1 questions

Why make electronic lab notebooks?

In a perfect world, you'd have a single pipeline that, when run, generates all figures, tables, and statistics for your paper

An electronic lab notebook makes your analysis transparent, unambiguous, and replicable to a reader

Automating analysis can **save time** in the long run

Allows you to **version control** your science

Problem: Make a pretty website, but only spend time on content

Solution: Markdown

Course description

Programming skills and software tools for building automated bioinformatics pipelines and computational biology analyses. Emphasis on UNIX tools and R libraries for distilling raw sequencing data into interpretable results. This course is aimed at students familiar with UNIX and with some programming experience in python, R, or C/C++.

Instructional staff

* [Cole Trapnell](<u>http://cole-trapnell-lab.github.io/</u>)

* Teaching assistant: April Lo

Please click on the links above for email addresses and office locations.

Meeting times and locations ### Classes:

Monday and Wednesday, 10:30 – 12:20 am, [zoom](<u>http://www.washington.edu/home/maps/southcentral.html?</u> <u>gnom</u>).

Class Slack:

We will use Slack during class and outside of class to communicate, share code snippets, ask and answer questions. The class slack is here: * [gs-bioinf-workflows.slack.com](<u>https://gs-bioinf-workflows.slack.com</u>)

You will receive an invitation to join prior to the first class.

Office hours:

* No official office hours. Post questions on Slack as needed.

Prerequisites

* Substantial background in molecular and cellular biology, genetics, biochemistry, or related disciplines.

- * Familiarity with UNIX.
- * Some programming experience in python, R, or C/C++.
- * Students are encouraged to have taken GENOME559 and/or GENOME560.

Course description

Programming skills and software tools for building automated bioinformatics pipelines and computational biology analyses. Emphasis on UNIX tools and R libraries for distilling raw sequencing data into interpretable results. This course is aimed at students familiar with UNIX and with some programming experience in python, R, or C/C++.

Instructional staff

- Cole Trapnell
- Teaching assistant: April Lo

Please click on the links above for email addresses and office locations.

Meeting times and locations

Classes:

Monday and Wednesday, 10:30 - 12:20 am, zoom

Class Slack:

We will use Slack during class and outside of class to communicate, share code snippets, ask and answer questions. The class slack is here:

gs-bioinf-workflows.slack.com

You will receive an invitation to join prior to the first class.

Course description

Programming skills and software tools for building automated bioinformatics pipelines and computational biology analyses. Emphasis on UNIX tools and R libraries for distilling raw sequencing data into interpretable results. This course is aimed at students familiar with UNIX and with some programming experience in python, R, or C/C++.

Instructional staff

* [Cole Trapnell](<u>http://cole-trapnell-lab.github.io/</u>) * Teaching assistant: April Lo

Markdown file structure

Course description

Programming skills and software tools for building automated bioinformatics pipelines and computational biology analyses. Emphasis on UNIX tools and R libraries for distilling raw sequencing data into interpretable results. This course is aimed at students familiar with UNIX and with some programming experience in python, R, or C/C++.

Instructional staff

* [Cole Trapnell](<u>http://cole-trapnell-lab.github.io/</u>) * Teaching assistant: April Lo

Markdown file structure

"Front matter": Meta data about the document goes here

Course description -

Programming skills and software tools for building automated bioinformatics pipelines and computational biology analyses. Emphasis on UNIX tools and R libraries for distilling raw sequencing data into interpretable results. This course is aimed at students familiar with UNIX and with some programming experience in python, R, or C/C++.

Instructional staff

* [Cole Trapnell](<u>http://cole-trapnell-lab.github.io/</u>) Hyperlink * Teaching assistant: April Lo

Markdown file structure

Course description

Programming skills and software tools for building automated bioinformatics pipelines and computational biology analyses. Emphasis on UNIX tools and R libraries for distilling raw sequencing data into interpretable results. This course is aimed at students familiar with UNIX and with some programming experience in python, R, or C/C++.

Instructional staff

* [Cole Trapnell](<u>http://cole-trapnell-lab.github.io/</u>) Teaching assistant: April Lo

Markdown file structure

Bulleted list. Enumerated lists also easy.

Course description

Programming skills and software tools for building automated bioinformatics pipelines and computational biology analyses. Emphasis on UNIX tools and R libraries for distilling raw sequencing data into interpretable results. This course is aimed at students familiar with UNIX and with some programming experience in python, R, or C/C++.

Instructional staff

* [Cole Trapnell](<u>http://cole-trapnell-lab.github.io/</u>) Teaching assistant: April Lo

Markdown file structure

Bulleted list. Enumerated lists also easy.

Markdown key features

- Markdown is a lightweight, plain text markup language that can be rendered into any number of formats
 - Allows you to forget about formatting and focus on content
 - Rendering engines for HTML, PDF, MS word, many others are available.
 - Some web hosting and blogging services (including GitHub) support posts in Markdown
 - Can run code written in other language and include results inline to generate data-driven reports

Rmarkdown

Problem: Make a data-driven report (or electronic lab notebook)

Solution: Rmarkdown

title: "test2" output: html_document ____

```{r setup, include=FALSE} knitr::opts\_chunk\$set(echo = TRUE)

### ## R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <<u>http://rmarkdown.rstudio.com</u>>.

When you click the **\*\*Knit**\*\* button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
```{r cars}
summary(cars)
```

Including Plots

You can also embed plots, for example:

```
```{r pressure, echo=FALSE}
plot(pressure)
```

Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.

### test2

### **R** Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this

summary(cars)

##	speed		dist		
##	Min.	: 4.0	Min.	:	2.00
##	1st Qu.	:12.0	1st Qu.	:	26.00
##	Median	:15.0	Median	:	36.00
##	Mean	:15.4	Mean	:	42.98
##	3rd Qu.	:19.0	3rd Qu.	:	56.00
##	Max.	:25.0	Max.	:1	20.00

### **Including Plots**

You can also embed plots, for example



Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

### Rmarkdown embeds R code in Markdown

# ```{r cars} summary(cars)

summary(cars)

##	speed	dist
##	Min. : 4.0	Min. : 2.00
##	1st Qu.:12.0	1st Qu.: 26.00
##	Median :15.0	Median : 36.00
##	Mean :15.4	Mean : 42.98
##	3rd Qu.:19.0	3rd Qu.: 56.00
##	Max. :25.0	Max. :120.00

# How Rmarkdown works



Image credit: www.rstudio.com

### Rstudio has a slick notebook interface for Rmarkdown

	•			RS					
🐑 nb-demo.Rmd 🛪									
	5	ABC Q	R Pr	eview 👻					
9 10 - 11 12	<pre>```{r} summary(ir ````</pre>	is)							
12	Sepal.L Min. : 1st Qu.: Median : Mean : 3rd Qu.: Max. :	ength 4.300 5.100 5.800 5.843 6.400 7.900	Sepal. Min. 1st Qu. Median Mean 3rd Qu. Max.	Width :2.000 :2.800 :3.000 :3.057 :3.300 :4.400					
13									
14 - 15 16 17	<pre>```{r} library(gg qplot(Sepa Petal.Widt ```</pre>	plot2 <mark>)</mark> l.LengtH h)	h, Petal	L.Lengtł					
	6 -								
	Petal.Length								
15:16	2 -	• • • • •	. <b>ti</b>	<b>!.</b> :					



# Problem 1

Create a new R notebook in Rstudio (File -> New File -> R Notebook)

Follow the instructions in the template to run and add code chunks

In a new chunk, compute the average speed and distance for the cars data frame and print the results

Render the Notebook to HTML, PDF, and MS Word